
Matching a Driver to a Device

USB Complete 253

9

Matching a Driver to a
Device
On detecting a newly attached USB device, the operating system needs to
decide what driver to assign to the device. This chapter shows how Win-
dows uses INF files to select a driver. I also show how the Windows Device
Manager and the system registry store information about devices and their
drivers.

Using the Device Manager
Windows’ Device Manager displays information about all installed devices
and presents a user interface for enabling, disabling, and uninstalling devices
and updating or changing a device’s assigned driver. For developers, the
Device Manager is useful for showing whether the correct driver is assigned
and successfully installed and for providing a way to force Windows to for-
get what it knows about a device and start fresh.

Chapter 9

254 USB Complete

Viewing Devices
To view the Device Manager, in Windows XP, right-click on My Computer,
click Manage, and in the Computer Management pane, select Device Man-
ager. Or click Start and select Settings > Control Panel > System > Hardware
> Device Manager. Or save some clicks by creating a shortcut to the file
devmgmt.msc in Windows\System32.

The Device Manager’s View menu offers four ways to view information: as
devices by type and by connection and as resources by type and by connec-
tion. Viewing devices by connection (Figure 9-1) shows the physical con-
nections from each host controller and root hub, through any additional
hubs, to the attached devices. To view information about a device, including

Figure 9-1: Device Manager’s option to view devices by connection quickly
shows which devices connect to which hubs and host controllers.

Matching a Driver to a Device

USB Complete 255

its driver(s) and any problem the operating system has detected with the
device, right-click the device’s listing and select Properties (Figure 9-2).

Viewing devices by type (Figure 9-3) groups devices according to their func-
tions, with little regard to hardware interface. The Class key(s) in the regis-
try determine what category or categories a device appears in. Many devices
fit into standard categories such as Disk Drives, Keyboards, and Modems.
Some devices are in multiple categories. For example, a keyboard may
appear under both Human Interface Devices and Keyboards. The USB cat-
egory lists host controllers, hubs, and some other devices. A device with a
vendor-specific driver can have its own category or use the USB category.

Figure 9-2: Device Manager’s Properties screens provide more information
about a device, including what driver the operating system has assigned to the
device.

Chapter 9

256 USB Complete

Viewing resources by connection or by type shows the memory and I/O
addresses and interrupt request (IRQ) lines assigned to each host controller.
It’s unlikely you’ll need this information when developing USB devices,
drivers, or applications.

An exclamation point over a device’s icon means that the host had a problem
communicating with the device or finding a driver. An X over an icon
means that the device is present but disabled, possibly by the user.

By default, the Device Manager shows only attached USB devices. To view
devices that have been removed but whose drivers are still installed, set the
following system environment variable:

DEVMGR_SHOW_NONPRESENT_DEVICES=1

To set the variable, in Windows’ Control Panel, click System > Advanced >
Environment Variables, enter the variable’s name, and set its value. Then in

Figure 9-3: Device Manager also has an option to view devices grouped by
type, or function.

Matching a Driver to a Device

USB Complete 257

Device Manager, click View and check the option to Show Hidden Devices.
You may need to reboot after setting the environment variable.

Property Pages
Each listing in the Device Manager has Property Pages that provide addi-
tional information about a device and the ability to control the device and
its driver. To view the Property Pages, double-click the device’s listing. You
can request to enable or disable the device or view, update, roll back, or
uninstall the device’s driver. A Details page provides additional information,
including various system IDs, any filter drivers or coinstallers the device
uses, and power capabilities.

Device Information in the Registry
The system registry is a database that Windows maintains for storing critical
information about the hardware and software installed on a system. The reg-
istry stores information about all devices that have been installed, whether
or not they’re currently attached. When a new device is enumerated, Win-
dows stores information about the device in the registry.

Some of the information about USB devices in the registry comes from the
bus drivers, which obtain the information from the devices. Other informa-
tion is from the INF file that the operating system selects when assigning a
driver to a device.

You can view the registry’s contents using Windows’ regedit utility. (From
the Start menu, select Run and enter regedit.) You can also use regedit to edit
the registry’s contents, but making registry changes this way isn’t recom-
mended and is seldom necessary. The Windows Platform SDK documents
API functions that enable applications to read and write to the registry. Typ-
ically, device installation is the only time it’s necessary to change device
information in the registry. A request to uninstall a device via the Device
Manager or another application also results in changes to the registry.

The system registry is a vital and essential component of Windows. It’s so
important that Windows maintains multiple backup copies in case the cur-

Chapter 9

258 USB Complete

rent copy becomes unusable. Be extremely careful about making changes to
the registry. Windows’ System Restore utility can restore the registry to an
earlier state. Just viewing the registry is safe, however.

The registry’s data has a tree structure. Each node on the tree is a registry key.
Each key can have entries with assigned values and subkeys that in turn may
have entries and subkeys. Information about the system’s hardware and
installed software is under the HKEY_LOCAL_MACHINE key, with
information about USB devices under several subkeys: the hardware key, the
class key, the driver key, and the service key.

The Hardware Key
The hardware key, also called the instance key or device key, stores informa-
tion about an instance of a specific device. Hardware keys are under the enu-
merator (Enum) key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Enum

Under the Enum key is a USB key. Each subkey of the USB key contains the
Vendor ID and Product ID of a USB device. Figure 9-4 shows the entry for

Figure 9-4: A hardware key contains information about an instance of a device
with a specific Vendor ID and Product ID.

Matching a Driver to a Device

USB Complete 259

a device with a Vendor ID of 0925h and Product ID or 1234h. Under each
of these keys may be one or more hardware keys, with each hardware key
identifying an instance of the device. Table 9-1 lists some of the entries
under the hardware key.

A device without a USB serial number gets a new hardware key every time
the device attaches to a port the device hasn’t been attached to previously. If
you physically remove the device and attach a different device with identical
descriptors to the same port, the operating system doesn’t know the differ-
ence so there is no new hardware key. Devices with USB serial numbers have
one hardware key per physical device, without regard to what port the
device is attached to.

A USB device may also have one or more keys for additional enumerators
such as HID, USBPRINT, and USBSTOR. For example, a UPS back-up
device with a HID interface can have a key in the Enum\USB branch to
name the HidUsb service and a key in the Enum\HID branch to name the
HidBatt service.

The Class Key
The class key stores information about device setup class and the devices
that belong to it. The class keys are under this registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
Class

The name of a class key is the device setup GUID for the class. This is the
same as the value stored in the hardware key for devices in the class, under
ClassGUID. Figure 9-5 shows the class key for the HID class. The class key
contains a friendly name for the setup class, the class name from the header
file that defines the GUID, and an index value that specifies the icon to use
in Device Manager and other windows that display setup information.
Applications can retrieve the index of the mini-icon for a class by calling
SetupDiGetClassBitmapIndex. A vendor-specific class installer or
co-installer can provide a vendor-specific icon.

Chapter 9

260 USB Complete

Optional entries in the class key can affect what users see on device installa-
tion. If NoInstallClass is present and not equal to zero, users will never need
to manually install devices in the class. If SilentInstall is present and not
equal to zero, the Plug and Play manager will install devices in the class
without displaying dialog boxes or requiring user interaction. If NoDisplay-
Class is present and not equal to zero, the Device Manager doesn’t display
devices of the class.

UpperFilters and LowerFilters entries can specify upper filter and lower filter
drivers that apply to all devices in the class.

The Driver Key
Under the class key, each device in a class has a driver key, also called a soft-
ware key. In the hardware key for a device instance, the Driver entry names a
device setup GUID that matches a class key and a device instance number
that matches a driver subkey under the class key. Figure 9-6 shows the key
for a generic HID-class device. Table 9-2 lists some of the entries for a driver
key.

The driver key contains the name of the INF file that in turn names the
driver files for the device.

Figure 9-5: The class key for the HID class includes a friendly name for the
class and an index to an icon.

Matching a Driver to a Device

USB Complete 261

Table 9-1: These are some of the entries in a USB device’s hardware key.
Key Description Source of Information

Class Name of the device’s setup class INF file (from devguid.h)

ClassGUID GUID of the device’s setup class INF file (from devguid.h)

DeviceDesc Device Description INF file, Models section,
device description entry

HardwareID ID string containing the device’s Vendor
ID and Product ID

Device descriptor

CompatibleIDs ID string(s) containing the device’s class
and (optional) subclass and protocol

Device and interface descriptors

Mfg Device manufacturer INF file, Manufacturer section,
manufacturer name entry

Driver Name of the device’s driver key System registry, under
CurrentControlSet\Control\Class

Location
Information

“USB Device” or iProduct string Bus driver or string descriptor

Service Name of the device’s Service key System registry, under
HKLM\System\
CurrentControlSet\Services

Figure 9-6: The driver keys under each class key have information about the
drivers assigned to instances of devices in the class.

Chapter 9

262 USB Complete

The Service Key
A service key has information about a driver’s files, including where they are
stored and how to load them. Service keys are in this branch:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

There are service keys for each host controller type, hubs, and classes such as
storage (USBSTOR), printers (USBPRINT), and HIDs (HidBatt, HidServ,
HidUsb). Figure 9-7 shows the Service key for HidUsb.

Inside INF Files
A device setup information file, or INF file, is a text file that contains infor-
mation about one or more devices in a device setup class. The devices may
be from one or more manufacturers. The file tells Windows what driver or
drivers to use and contains information to store in the registry. Windows
includes INF files for the drivers provided with the operating system. The
files are in the %SystemRoot%\inf folder. Any new INF files for added
devices are copied to this folder as well. By default, the folder is hidden. If
you don’t see it in Windows Explorer, select Tools > Folder Options > View,

Table 9-2: The driver key contains information about the driver assigned to a
device.
Key Description Source of Information

DriverDate Date of the driver file INF file, Version section,
DriverVer directive

DriverDesc Driver description INF file

DriverVer Driver version INF file, Version section,
DriverVer directive

InfPath Name of INF file INF file name

InfSection Name of the driver’s DDInstall
section

INF file

InfSectionExt “Decorated” extension used in INF
file (.NT, etc.)

INF file

MatchingDeviceID The hardware or compatible ID used
to assign the driver

Device descriptor and INF file

ProviderName The provider of the driver INF file, Provider string

Matching a Driver to a Device

USB Complete 263

then under Hidden Files, select Show hidden files and folders. Do not select
Hide file extensions for known file types.

On first attachment, after retrieving descriptors from a USB device, Win-
dows looks for a match between the information in the descriptors and the
information in the system’s INF files.

This section doesn’t attempt to document every nuance of INF-file creation.
Instead, I use an example INF file to show the kinds of information an INF
file can contain. The Windows DDK documentation has more details.
Examining the INF files included with Windows is another way to learn
about the kinds of things contained in the files and how the information is
structured.

Listing 9-1 shows an INF file for the Ellisys USB Explorer protocol analyzer,
which uses a vendor-specific driver. (The analyzer has a USB interface that
communicates with the PC running the analyzer software.) This INF file is
suitable for use under Windows 98, Windows Me, Windows 2000, and
Windows XP.

Figure 9-7: The service key names a driver’s file.

TE
AM
 F
LY

Chapter 9

264 USB Complete

; Copyright (C) 1999-2004 Ellisys. All rights reserved.

[Version]
Signature="$CHICAGO$"
DriverVer=01/29/2004,2.0.1600.0
Provider=%Provider%
Class=EllisysProtocolAnalyzers
ClassGUID={D8854594-A4EF-480e-B8D8-CBDDADB4F3B4}

[ClassInstall]
AddReg=ClassAddReg

[ClassInstall32]
AddReg=ClassAddReg

[ClassAddReg]
HKR,,,,"%ClassName%"
HKR,,Icon,,-20

[Manufacturer]
%Manufacturer%=Models

[DestinationDirs]
DefaultDestDir=10,System32\Drivers

[SourceDisksNames]
1=%SourceDisk%,,,.

[SourceDisksFiles]
ellex200.sys=1

[Models]
%DeviceDesc%=Install,USB\VID_0ABA&PID_8002

[Install]
CopyFiles=Install.CopyFiles
AddReg=Install.AddReg

[Install.CopyFiles]
ellex200.sys,,,2

Listing 9-1: The INF file for the Ellisys USB Explorer 200 protocol analyzer
(Sheet 1 of 2).

Matching a Driver to a Device

USB Complete 265

Syntax
The contents of an INF file must follow a few syntax rules.

• The information is arranged in sections, with each section containing
one or more items. The section name is in square brackets []. Some of
the sections (Version, Manufacturer) are standard sections that every INF
file has. Other sections match values specified in other sections. For
example, if the Manufacturer section designates the manufacturer as
Lakeview, the INF file will also have a [Lakeview] section. The sections

[Install.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,ellex200.sys

[Install.NT]
CopyFiles=Install.CopyFiles

[Install.NT.Services]
AddService=ellex200,2,Install.NT.AddService

[Install.NT.AddService]
DisplayName=%SvcDesc%
ServiceType=1
StartType=3
ErrorControl=1
ServiceBinary=%10%\system32\drivers\ellex200.sys

[Strings]
ClassName="Ellisys protocol analyzers"
Provider="Ellisys "
Manufacturer="Ellisys"
SourceDisk="USB Explorer 200 Installation Disk"
DeviceDesc="USB Explorer 200"
SvcDesc="USB Explorer 200 Driver (ellex200.sys)"

Listing 9-1: The INF file for the Ellisys USB Explorer 200 protocol analyzer
(Sheet 2 of 2).

Chapter 9

266 USB Complete

can be in any order, but the order of the items within a section can be
critical.

• A semicolon (;) indicates a comment.

• A backslash (\) at the end of a line acts as a line continuator, unless it’s
enclosed in quotes ("\").

• Text enclosed in percent symbols (%sampletext%) refers to a string. For
example, you might have the following item:

Provider=%Provider%

 with an item in the Strings section that defines the provider string:

Provider="Ellisys"

• Some items set the value of an entry. For example, this item specifies a
device’s class:

Class=EllisysProtocolAnalyzers

• Some items provide information to store in the system registry. This item
stores the name of a device’s driver:

HKR,,NTMPDriver,,ellex200.sys

Sections
Each section of an INF file has a role in helping Windows find a file that
matches a device, load the appropriate drivers, and store information about
the device in the registry. The discussion that follows explains the purpose of
each section in the example INF file with the aim of showing the types of
information an INF file can provide.

Copyright Comment

To pass the tests in the Chkinf utility (described later in this chapter), an
INF file must have a comment that contains the word copyright:

; Copyright (C) 1999-2004 Ellisys. All rights
reserved.

Version

The Version section is the file’s header. Every INF file must have this sec-
tion. The Version section in the example has these items:

Matching a Driver to a Device

USB Complete 267

[Version]
Signature="$CHICAGO$"
DriverVer=01/29/2004,2.0.1600.0
Provider=%Provider%
Class=EllisysProtocolAnalyzers
ClassGUID={D8854594-A4EF-480e-B8D8-CBDDADB4F3B4}

The Signature directive specifies what operating systems the INF file is
intended for. For devices that use WDM drivers, the value can be $Win-
dows 95$, $Windows NT$, or $Chicago$, no matter which operating sys-
tem the PC is using. Chicago was a name used when Windows 95 was
under development and its use is still valid under later editions of Windows.
The value is case-insensitive.

The DriverVer directive gives the date and version number for the driver(s)
named in the INF file. In selecting a driver, all else being equal, Windows
will select the more recent driver. A DriverVer directive can also appear in a
DDInstall section to provide information that applies only to the driver(s)
in that section. Windows 2000 and Windows XP must have a DriverVer
directive in the Version section and may have DriverVer directives in DDIn-
stall sections. Windows 98 and Windows Me don’t recognize DriverVer
directives in the Version section, so any DriverVer directives for these Win-
dows editions must be in the DDInstall sections.

The Provider directive names the creator of the INF file. In the example,
%Provider% is a string defined later in the file.

The Class directive specifies the class for devices installed with the INF file.
The example specifies the vendor-specific class EllisysProtocolAnalyzers.

The ClassGUID directive is the device setup GUID to store in the device’s
Class key in the registry. A vendor-specific driver can use the GUID for
USB devices or a vendor-specific GUID. The example uses a vendor-specific
GUID.

ClassInstall32

The ClassInstall32 section installs a new class in the Class section of the reg-
istry. This section is processed only if a device’s class hasn’t been installed

Chapter 9

268 USB Complete

previously. This section should exist only in INF files for devices in ven-
dor-specific device setup classes.

The example ClassInstall32 section has one item:

[ClassInstall32]
Addreg=Class.AddReg

The Addreg directive adds a class description to the registry. In the example,
the directive’s value refers to the Class.Addreg section. This section provides
a class description in the %ClassName% string and an index value for an
icon to display in Device Manager:

[ClassAddReg]
HKR,,,,"%ClassName%"
HKR,,Icon,,-20

A negative Icon value refers to an icon defined in Windows’ setupapi.dll. A
positive Icon value refers to an icon to be extracted from a class installer
DLL or property page DLL.

HKR stands for HKEY_ROOT, which is the base registry key for the sec-
tion that AddReg appears in. In this example, the information is stored
under the device’s Class key.

The example also has a section titled [ClassInstall] for Windows 98 systems.

Manufacturer

The Manufacturer section identifies one or more groups of devices and an
Install section for each group. Every INF file must have this section.

In the example, %Manufacturer% is a string defined later in the file, and
Models is the name of a section that identifies the manufacturer’s devices.
Models is the generic name for the section. The name can be more specific,
such as CypressMice or PhilipsAudio, and an INF file with multiple Models
sections must of course use a different name for each section.

[Manufacturer]
%Manufacturer%=Models

Matching a Driver to a Device

USB Complete 269

DestinationDirs

The DestinationDirs section names the folder or folders that any CopyFiles,
RenFiles, and DelFiles items in the INF file will use. A dirid value of 10
specifies the Windows folder. The Windows DDK documentation lists
other dirid values. Windows 98 documentation uses the term LDID (logical
disk identifier) instead of dirid.

[DestinationDirs]
DefaultDestDir=10,System32\Drivers

SourceDisksNames

The SourceDisksNames section provides a text description for the installa-
tion disk(s). In the entry below, there is one source disk whose name is the
%SourceDisk% string defined later in the file. An entry can also specify a
volume label and serial number for the disk.

[SourceDisksNames]
1=%SourceDisk%,,,.

SourceDisksFiles

The SourceDisksFiles section names any file(s) to install from the installa-
tion disk. If a file isn’t in the disk’s root directory, the entry can specify a sub-
directory.

[SourceDisksFiles]
ellex200.sys=1

Models

The Manufacturer section names one or more Models sections. Each Mod-
els section contains one or more entries that match a device description to a
DDInstall section and hardware ID.

In the example, the device description is the %DeviceDesc% string defined
later in the file. Install is the name of the INF file’s DDInstall section, which
has installation instructions for the device and can add device information
to the registry. USB\VID_0ABA&PID_8001 is the hardware ID that iden-
tifies the device by its Vendor ID and Product ID. Following the hardware
ID, an entry can provide one or more compatible IDs that provide alternate,

Chapter 9

270 USB Complete

typically more general, ways to identify devices that use the same driver. The
section Using Device Identification Strings later in the chapter has more about
hardware and compatible IDs.

[Models]
%DeviceDesc%=Install,USB\VID_0ABA&PID_8001

The example INF file has two sets of Install sections. One set (Install,
Install.CopyFiles, and Install.AddReg) is for Windows 98 and Windows
Me. The other set (Install.NT, Install.CopyFiles, Install.NT.Services, and
Install.NT.AddService) is for Windows 2000 and Windows XP. Both sets
use the same Install.CopyFiles section. The section names that contain .NT
are known as decorated sections:

[Install]
CopyFiles=Install.CopyFiles
AddReg=Install.AddReg

[Install.CopyFiles]
ellex200.sys,,,2

[Install.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,ellex200.sys

[Install.NT]
CopyFiles=Install.CopyFiles

[Install.NT.Services]
AddService=ellex200,2,Install.NT.AddService

[Install.NT.AddService]
DisplayName=%SvcDesc%
ServiceType=1
StartType=3
ErrorControl=1
ServiceBinary=%10%\system32\drivers\ellex200.sys

In the example’s Install section, the CopyFiles directive names the
Install.CopyFiles section, which specifies the driver file to copy
(ellex200.sys). A flag value of 2 tells Windows not to allow the user to skip
copying the file. The AddReg directive names the Install.AddReg section,

Matching a Driver to a Device

USB Complete 271

which provides information to add to the registry. In the Install.AddReg sec-
tion, DevLoader names the device loader associated with the device and
NTMPDriver names the driver.

The DDInstall section for Windows 2000 and Windows XP is Install.NT.
The CopyFiles directive names the same Install.CopyFiles section used for
Windows 98 and Windows Me. These Windows editions don’t require the
DevLoader and NTMPDriver entries, so there is no AddReg section.

Windows 2000 and Windows XP require two additional sections:
Install.NT.Services and Install.NT.AddService. The Services section specifies
a ServiceName for the driver (ellex200), assigns the service as the
Plug-and-Play function driver for the device (flags = 2), and names an
AddService section that specifies how and when the driver’s services are
loaded (Install.NT.AddService).

The AddService section in the example has five entries. DisplayName speci-
fies a friendly name for the service. ServiceType = 1 indicates that the entry
is for a kernel-mode device driver. StartType = 3 to start the driver on enu-
meration. ErrorControl = 1 to display a warning and proceed if there is an
error when loading or initializing the device. ServiceBinary specifies the
location of the driver named in the CopyFiles section. This section can have
many additional directives that are optional or required only for some device
and drivers.

Strings

The Strings section defines all of the strings that other sections refer to.

[Strings]
ClassName="Ellisys protocol analyzers"
Provider="Ellisys "
Manufacturer="Ellisys"
SourceDisk="USB Explorer 200 Installation Disk"
DeviceDesc="USB Explorer 200"
SvcDesc="USB Explorer 200 Driver (ellex200.sys)"

Chapter 9

272 USB Complete

Using Device Identification Strings
To identify possible drivers for a device, Windows searches the system’s INF
files for a device identification string that matches a string created from
information in the device’s descriptors. There are three categories of device
identification strings: device IDs, hardware IDs, and compatible IDs.

Identification Strings Obtained from a Device

Every USB device has at least one device ID, which the hub driver creates
from the Vendor ID, Product ID, and revision number in the device
descriptor. A device ID for a USB device has one of these forms:

USB\VID_xxxx&PID_yyyy&REV_zzzz
USB\VID_xxxx&PID_yyyy

The values in xxxx, yyyy, and zzzz are four characters each: xxxx is the
idVendor value, yyyy is the idProduct value, and zzzz is the bcdDevice value.
The idVendor and idProduct values are hexadecimal values, except for Win-
dows Me, which uses decimal, and bcdDevice is in BCD format.

For example, a device with VID = 0925h, PID = 1234h, and bcdDevice =
0310 has this device ID:

USB\VID_0925&PID_1234&REV_0310

Devices with multiple interfaces can specify a driver for each interface. In
this case, the device has multiple device IDs, one for each interface. A device
ID for an interface has one of these forms:

USB\VID_xxxx&PID_yyyy&REV_zzzz&MI_ww
USB\VID_xxxx&PID_yyyy&MI_ww

The values in xxxx, yyyy, and zzzz are the same as in the previous device IDs.
The 2-character value in ww equals bInterfaceNumber in the interface
descriptor for one of the device’s interfaces. For example, a composite device
that functions as a mouse and keyboard might have entries in two Models
sections, one for the keyboard (interface 00) and one for the mouse (inter-
face 01):

[LAKEVIEW_KEYBOARD]
%USB\VID_0925&PID_0801&MI_00.DeviceDesc%=
HID_Inst,, USB\VID_0925&PID_0801&MI_00

Matching a Driver to a Device

USB Complete 273

[LAKEVIEW_MOUSE]
%USB\VID_0925&PID_0801&MI_01.DeviceDesc%=
HID_Inst,, USB\VID_0925&PID_0801&MI_01

A HID-class device whose report descriptor contains more than one
top-level collection can have a device ID for each collection. A device ID for
a collection can have any of these forms, where bb indicates the collection
number:

USB\VID_xxxx&PID_yyyy&REV_zzzz&Colbb
USB\VID_xxxx&PID_yyyy&Colbb
USB\VID_xxxx&PID_yyyy&REV_zzzz&MI_ww&Colbb
USB\VID_xxxx&PID_yyyy&MI_ww&Colbb

In addition to a device ID, some drivers create one or more compatible ID
strings for a device. A compatible ID can identify a device by its class code
and any subclass and protocol codes in the device descriptor. A compatible
ID uses one of the following forms:

USB\CLASS_aa&SUBCLASS_bb&PROT_cc
USB\CLASS_aa&SUBCLASS_bb
USB\CLASS_aa

The values aa, bb, and cc match values in the device descriptor and are two
characters each: aa is the bDeviceClass value, bb is the bDeviceSubclass
value, and cc is the bDeviceProtocol value. The values are expressed in hexa-
decimal, except for Windows Me, which uses decimal.

For example, the class code for HIDs is 03h, so HID-class devices have the
following compatible ID:

USB\Class_03

For some compatible IDs, Windows defines descriptive names such as
USBSTOR_BULK or GENERIC_USB_PRINTER.

A compatible ID in an INF file indicates a less desirable but acceptable
match. Compatible IDs enable Windows to find and load a driver if the
INF files don’t contain a matching device ID. A vendor’s INF file should not
contain a compatible ID.

Chapter 9

274 USB Complete

Obtaining Identification Strings from an INF File

In an INF file, each entry in a Models section has one hardware ID and zero
or more compatible IDs. The hardware ID is listed first, followed by any
compatible IDs, with commas separating the IDs.

A hardware ID can have any of several forms. It can have one of the forms
described above for a device ID for a device, interface, or HID collection.
INF files provided with Windows may contain hardware IDs that use the
compatible-ID formats described above to identify a device by class or
descriptive name.

Finding a Match
In looking for the best match between the information retrieved from a
device and the information in INF files, Windows assigns a rank to every
match found, with a lower rank indicating a better match (Table 9-3).
NT-based operating systems, which include Windows 2000 and Windows
XP, give a much lower rank to “trusted” drivers. These are drivers whose cat-
alog (.cat) file has a digital signature that indicates that the driver has passed
Windows Hardware Quality Labs (WHQL) testing. Chapter 17 has more
about WHQL testing. A trusted driver is also called a signed driver. Win-
dows 98 doesn’t check for trusted drivers.

In an NT-based operating system, the best match is a device ID that
matches a hardware ID in a trusted INF file. The second-best match is a
device ID that matches a compatible ID in a trusted INF file. Next is a
match between a compatible ID from the device and a hardware ID in a
trusted INF file, followed by a match of compatible IDs from the device and
a trusted INF file. Only if there are no matches at all with a trusted INF file
will an NT-based operating system consider an ID from an untrusted INF
file.

If Windows can’t find a match, it starts the Found New Hardware wizard
and gives the user a chance to specify a location (such as a CD drive) to look
for the INF file.

Composite devices, which have multiple interfaces, are a special case.
Because each interface may require a different driver, selecting a driver using

Matching a Driver to a Device

USB Complete 275

only the Vendor ID and Product ID isn’t always sufficient. If there is no bet-
ter match, Windows XP uses the compatible ID USB\COMPOSITE,
which results in loading the USB common class generic parent driver. This
driver creates a set of device and compatible IDs for each interface, and
Windows can then assign a driver to each interface. In earlier Windows edi-
tions, the bus or hub driver handles this task.

Windows comes with hundreds of INF files, and a new device may come
with its own INF file. To speed up searching, during device installation,
Windows creates a PNF (precompiled INF) file and stores it in the same
folder as the device’s INF file. The PNF file contains much of the same
information as the INF file but in a format that enables quicker searching.

Table 9-3: Windows assigns a rank to each INF file that matches a device ID or
compatible ID from the device.
Rank (Hex) ID from

Descriptors
ID from INF file Trusted

Driver?
“Decorated”
INF section?

0000–0FFF Device Hardware yes Yes. (All trusted
drivers have
decorated INF
sections for
NT-based OS’s.)

1000–1FFF Device Compatible yes

2000–2FFF Compatible Hardware yes

3000–3FFF Compatible Compatible yes

8000–8FFF Device Hardware no yes*

9000–BFFF Compatible Compatible no yes*

C000–CFFF Device Hardware no no

D000–FFFE Compatible Compatible no no

FFFF Worst-case match. Used by components such as co-installers

*Considered only by NT-based operating systems (Windows 2000, Windows XP).

Chapter 9

276 USB Complete

Do You Need to Provide an INF File?
Not every device requires its own INF file. Many devices that use only the
system’s class drivers can use the INF file that Windows provides for the
class. These are some INF files for USB classes in Windows XP:

Because Windows XP and later prefer trusted drivers, if you provide an
untrusted driver for a device in a supported class, Windows XP and later
won’t use your driver and instead will select a compatible ID from the class’s
INF file. An INF file is considered part of the driver package, so if you
attempt to provide an untrusted INF file that assigns a trusted driver to your
device, Windows XP and later will prefer a system-provided INF file over
your INF file. Any change to the contents of a trusted INF file causes an
INF file to become untrusted, so you can’t add your device to an existing
INF file without causing the INF file to become untrusted.

When the best match is an unsigned driver, operating-system settings con-
trol whether Windows blocks installation, installs the driver with a warning,
or installs with no warning. To change the setting, in Windows Control
Panel, click System > Hardware > Driver Signing.

A device that uses a class driver can have a custom INF file with vendor-spe-
cific strings that display in the Device Manager. For example, the entry for a
HID can be a vendor-specific string such as “My Marvelous HID” instead
of the default “USB Human Interface Device.” But using a custom INF file
under Windows XP and later requires the device and INF file to pass
WHQL tests.

Class INF File

Audio wdmaudio.inf

Human Interface Device (HID) input.inf (hiddev.inf in Windows 98)

Hub usb.inf

Mass Storage usbstor.inf

Printer usbprint.inf

Smart Card smartcrd.inf

Still Image sti.inf

Matching a Driver to a Device

USB Complete 277

The INF files provided with Windows typically contain sections with man-
ufacturer-specific information. When a device passes the WHQL tests,
Microsoft often adds the device’s sections to an existing INF file or adds a
manufacturer-specific INF file to the files distributed with Windows.

Some devices, such as modems, must provide their own INF files. The Win-
dows DDK has examples. A device with a vendor-specific driver must also
have its own INF file.

Tools and Diagnostic Aids
Microsoft provides several tools to help in creating and testing INF files:
GenInf for creating files, ChkInf for testing a file’s structure and syntax, and a
log file of events that occur during device installation.

GenInf is a wizard that asks questions about your device and uses the infor-
mation to create an INF file. The documentation warns that the created file
is a skeleton that may not be fully valid and is likely to need additions or
revisions. In particular, the generated INF files do not support older Win-
dows editions or create multi-platform INF files.

ChkINF is a Perl script that requires a Perl interpreter, which you can down-
load free from www.activeware.com and other sources. The script runs from
a command prompt and creates an HTML page that annotates an INF file
with errors and warnings.

When a device is detected, Windows uses Setup and device-installation
functions to select a matching INF file and install the device’s drivers. The
functions also log events and errors in a text file stored in %System-
Root%\setupapi.log. The log can be useful when debugging problems with
device installations. The Windows DDK documentation has more about
how to use the logging capability.

Tips for Using INF Files
Here are some tips for using and experimenting with INF files:

Chapter 9

278 USB Complete

Use a Valid Vendor ID

Firmware that you make available outside of a controlled environment must
use a Vendor ID assigned by the USB-IF. My example code uses the Vendor
ID of 0925h, which is assigned to my company, Lakeview Research. The
owner of the Vendor ID is responsible for ensuring that each product and
version has a unique Vendor ID/Product ID pair. Borrowing someone else’s
Vendor ID can lead to conflicts if the owner of the ID uses the same values
for a different device.

Finding INF Files

On installing a device with a new INF file, Windows copies the INF file to
%SystemRoot%\inf and may rename the file oem*.inf and create a .PNF file
named oem*pnf, where * is a number. To find INF files that contain a spe-
cific Vendor ID and Product ID, search from Windows’ Start menu >
Search > For Files or Folders. Browse to the %SystemRoot%\inf folder and
search for the text VID_xxxx&PID_yyyy, where xxxx is the device’s vendor
ID and yyyy is the product ID.

Removing Device Information

When experimenting with different settings in an INF file, you may find
that at times Windows is using information stored in the system registry
from a previous version of the INF file. If you want Windows to use a differ-
ent or changed INF file for a device (because you want to change the driver
or device description, for example), you may need to tell Windows to forget
what it knows about the device. With the device installed, right-click its list-
ing in the Device Manager, and select Uninstall. Delete any unwanted INF
and PNF files that contain your device’s Vendor ID and Product ID. You
can then remove the device and reattach it, and Windows will start fresh in
searching for a driver. (If this approach fails, you may need to delete the
unwanted INF and PNF files and registry keys manually.)

To cause Windows 98 to forget what it knows about a device, you may need
to rebuild the driver information database. In the %SystemRoot%\inf folder,
rename drvdata.bin to drvdata.xxx and rename drvidx.bin to drvidx.xxx. By

Matching a Driver to a Device

USB Complete 279

renaming the files rather than deleting them, you can restore them if neces-
sary.

INF File Names

The INF files that ship with Windows all have file names with no more than
eight characters plus the 3-character extension. Microsoft says that this is
due to “technical issues with the product install,” but that INF files added
after Windows is installed may use longer file names.

What the User Sees
What the user sees on the screen after attaching a USB device can vary
depending on the Windows edition, the contents of the device’s INF file,
the driver’s location, whether the driver has a co-installer and is digitally
signed, and whether the device has been attached and enumerated previ-
ously and has a serial number.

Device and Class Installers

Device and class installers provide functions relating to device installation.
The installers are DLLs (dynamic link libraries). Windows provides default
installers for devices in supported device setup classes. A device vendor can
provide a co-installer that works along with a class installer to support oper-
ations that are specific to one or more devices in a class. A co-installer can
add information to the registry, request additional configuration informa-
tion from the user, provide device-specific Properties pages for the Device
Manager to display, and perform other tasks relating to device installation. A
vendor-defined device setup class can have its own class installer. The Win-
dows DDK documentation has information about writing installers and
co-installers.

Searching for a Driver

On boot up or device attachment, after retrieving a device’s descriptors, the
operating system searches for a matching hardware key. If a key exists, the
operating system has what it needs to assign a driver to the device. The hard-
ware key’s Driver entry points to the driver key, which names the INF file.

Chapter 9

280 USB Complete

The hardware key’s Service entry points to the service key, which has infor-
mation about the driver files.

On first attachment, there is no matching hardware key and Windows
searches its INF files for a match. If the device uses a vendor-specific driver,
Windows won’t find an INF file and will start the New Device Wizard. The
user can let Windows search for a driver or specify what disk and/or folder
to search. If your driver is signed and you want to eliminate the need for
users to specify the driver’s location, you can provide an installation program
that uses the API function SetupCopyOEMInf to copy your INF file to the
INF folder on the user’s system.

On finding a matching INF file, Windows copies the file to %System-
Root%\inf (if the file isn’t already there), loads the driver(s) specified in the
file if necessary, adds the appropriate keys to the system registry (which also
adds the device to the Device Manager), and may display a message to
inform the user that the device has been installed.

After installing a device, when installing additional devices that are identical
except for the serial number, Windows behaves differently depending on
whether the driver is digitally signed. When the driver is signed, Windows
uses administrative privileges to install the driver for additional devices after
the first, even if the current user doesn’t have these privileges. If the driver is
unsigned, Windows uses the privileges of the current user in deciding
whether to install the driver for additional devices.

When re-attaching a previously attached device, whether Windows finds a
driver key can depend on whether the device’s descriptors include a USB
serial number string. If the device doesn’t have a serial number, the hardware
key will be found only if the device is re-attached to a port where the device
was attached previously. If the device has a serial number, the hardware key
will be found no matter which port the device attaches to.

